三七重楼生化汤对成纤维细胞功能的影响及机制研究

俞富贤1 陈少琴1 潘国强2 刘佳俐1 范梦梦1 潘鸿燕4

1. 浙江中医药大学第二临床医学院 杭州 310053 2. 浙江中医药大学附属第二医院 3. 浙江中医药大学第三临床医学院 4. 云和县中医院

摘要: 目的: 观察三七重楼生化汤(Sanqi Chonglou Shenghua Decoction, SCD) 对L929 细胞生长增殖、迁移、黏附及促进相关蛋白表达的影响, 并探讨其机制。方法: 常规培养 L929 细胞, 随机分为 SCD 低、中、高浓度组及对照组, SCD 各浓度组与不同浓度 SCD (1.25, 2.5, 5 mg·mL⁻¹) 对照组给予等体积培养基, 以实时细胞分析法(real-time cellular analysis, RTCA)、细胞增殖检测试剂盒(cell counting kit-8, CCK-8) 分别检测细胞增殖、黏附能力, 观察实验检测细胞迁移情况。Western blot 检测血管内皮生长因子(vascular endothelial growth factor, VEGF)、转化生长因子-β, (transforming growth factor-β, TGF-β)、细胞外调节蛋白激酶 1/2(extracellular regulated protein kinases 1/2, ERK1/2) 磷酸化水平及细胞外调节蛋白激酶 1/2(phospho-extracellular regulated protein kinases 1/2, p-ERK1/2) 蛋白表达, 结果: SCD 促进 L929 细胞生长增殖, 促进细胞迁移, RTCA 结果: SCD 高浓度组于 12-24 h 中, 高浓度促进细胞增殖 (P<0.01), 但与中、低浓度组比较差异无统计学意义 (P>0.05)。CCK-8 结果示: SCD 高浓度组于 24 h 中, 高、中、低浓度组促进细胞增殖 (P<0.01)。与低浓度组比较, 中、高浓度组促进增殖作用更显著 (P<0.05)。SCD 促进 L929 细胞迁移。Western blot 结果: SCD 高浓度组于 48 h 中, 高、中、低浓度组促进细胞迁移 (P<0.05, P<0.01), 与低浓度组比较, 中、高浓度组促进细胞迁移作用更显著 (P<0.05, P<0.01)。与中、低浓度组比较, 高浓度组促进细胞迁移作用显著 (P<0.01)。SCD 促进 L929 细胞迁移, 但不同浓度间差异无统计学意义 (P>0.05)。SCD 高浓度组可上调血管内皮生长因子 VEGF、p-ERK1/2 的表达 (P<0.01), 但 SCD 不影响 TGF-β, 表达 (P>0.05)。[结论] SCD 可促进 L929 细胞生长增殖、迁移和黏附, 并促进 VEGF 蛋白表达, 从而发挥促进细胞生长增殖的作用, 其机制可能与 ERK 信号通路激活有关。

关键词: 三七重楼生化汤; 成纤维细胞; VEGF; TGF-β; ERK 信号通路; 增殖; 迁移; 黏附

中图分类号: R329
文献标识码: A
文章编号: 1005-5509(2020)12-1215-07

Effects of Sanqi Chonglou Shenghua Decoction on Biological Function of Fibroblasts and Its Mechanism

YU Fuxian1, SHENG Shaoqin1, PAN Hongyi1, et al 1. The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou(310053), China; 2. The Second Affiliated Hospital of Zhejiang Chinese Medical University; 3. The Third Clinical Medical College of Zhejiang Chinese Medical University

Abstract: Objective To observe the effects of Sanqi Chonglou Shenghua Decoction (SCD) on proliferation, adhesion, migration and expression of healing related proteins of L929 fibroblasts and explore its related mechanism. [Methods] L929 fibroblasts were cultured and randomly divided into SCD low dose group, SCD medium dose group, SCD high dose group and control group. The drug intervention groups were treated with SCD at different concentrations (1.25, 2.5, 5 mg·mL⁻¹) while control group was treated with medium of same volume. Real-time cell analysis (RTCA) and cell counting kit-8 (CCK-8) assay were used to detect the proliferation and adhesion of L929. The scratch test was used to detect the migration of L929. Western blot was used to detect the protein expressions of vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), extracellular regulated protein kinases 1/2 (ERK1/2), phospho-extracellular regulated protein kinases 1/2 (p-ERK1/2). [Results] SCD promoted fibroblast proliferation dynamically, RTCA showed medium and high dose groups promoted proliferation after 12-24 hours’ intervention (P<0.01), but there was no significant difference between two groups (P>0.05). CCK-8 assay showed SCD promoted cell proliferation in low, medium and high dose groups (P<0.01). Compared with the low dose group, the promoting effect of high dose groups was more significant (P<0.01). Compared with the medium dose group, the promoting effect in high dose group was more significant (P<0.05). SCD promoted fibroblast migration. After 24 hours’ intervention, the medium and high groups promoted migration (P<0.05, P<0.01), the promoting effect in high dose group was more significant (P<0.01). After 36 hours’ intervention, the low, medium and high dose groups promoted migration (P<0.05, P<0.01). Compared with low dose group, the promotion effect of medium and high dose group was more significant (P<0.05, P<0.01). Compared with the medium dose group, the promoting effect in high dose group was more significant (P<0.01). [Conclusion] SCD can promote the proliferation, adhesion and migration of fibroblasts and increase the protein expression of VEGF, so as to promote the healing of cutaneous section scars, and it may be related to the activation of ERK signaling pathway.

Key words: Sanqi Chonglou Shenghua Decoction; fibroblasts; VEGF; TGF-β; ERK signaling pathway; proliferation; adhesion
PCSD的可靠方法，因此如何有效防治PCSD成为临床迫切需要解决的难点。剖宫产术后子宫切口愈合是一个多细胞参与的复杂过程，由于平滑肌组织再生能力较弱，大部分愈合以纤维性修复为主。创伤愈合早期，富含毛细血管的肉芽组织可在短时间内填补创面，维持组织器官完整性，同时可以预防感染，其形成有赖于成纤维细胞的迁移、黏附、增殖及愈合相关蛋白的分泌[8]。因此，促进成纤维细胞的迁移、黏附、增殖及愈合相关蛋白的分泌，将有助于促进子宫切口愈合。

中医认为本病当由血瘀所致，兼夹气血亏虚，治疗当以益气养血、化瘀生新为主，辅以清热解毒。三七重楼生化汤(Sanqi Chonglou Shenghua Decoction，SCD)为我科经验方，方由生化汤加味而成，具有抗炎抑菌、化瘀生新之效，可改善机体的血液循环状态，促进创伤的愈合。临床研究已证实，该方对剖宫产术后子宫切口愈合不良、恶露不绝、子宫复旧不良等均具有良好疗效[40]。但作为中药处方方剂，其药效机制尚不明确。故本研究拟体外培养小鼠成纤维细胞，探讨SCD对成纤维细胞功能及对细胞因子分泌的影响，为临床药理研究提供理论依据。

1 材料和方法
1.1 细胞 小鼠成纤维细胞系L929由浙江中医药大学附属第二医院中心实验室馈赠。选择含10%胎牛血清、100U·mL⁻¹青霉素、100mg·L⁻¹链霉素的杜氏改良伊格尔培养基(dulbecco's modified eagle medium，DMEM)，于37℃，5%CO₂恒温培养箱中培养。定期观察细胞生长情况，每2d换液一次。

1.2 主要药品与试剂 SCD组方包括三七3g、重楼3g、当归20g、桃仁10g、川芎10g、益母草30g、黄芪10g、生姜6g、甘草6g，药物由浙江中医药大学附属第二医院药剂科提供。以上药物以去离子水常规煎煮2次，浓缩后过滤除菌，分装，-20℃保存备用。前期研究中采用细胞增殖检测实验筛选出SCD最佳浓度，分为低、中、高3个浓度梯度，分别为1.25、2.5、5mg·mL⁻¹。DMEM高糖培养基、胰酶、胎牛血清均购自美国Gibco公司(批号：C11995500BT，25200056，10091-141)；磷酸缓冲液(phosphate buffer saline，PBS)、青霉素链霉素溶液均购自杭州诺森德生物科技有限公司(批号：C10010，C15140)；β-肌动蛋白(β-actin)小鼠单克隆抗体、转化生长因子-β1(transforming growth factor-β1，TGF-β1)兔多克隆抗体、血管内皮生长因子-A(vascular endothelial growth factor-A，VEGF-A)兔单克隆抗体、细胞外调节蛋白激酶1/2(extracellular regulated protein kinases 1/2，ERK1/2)兔多克隆抗体、磷酸化细胞外调节蛋白激酶1/2(phospho-extracellular regulated protein kinases 1/2，p-ERK1/2)兔多克隆抗体、山羊抗兔二抗(goat anti rabbit IgG)、山羊抗小鼠二抗(goat anti mouse IgG)均购于美国Abcam公司(批号：ab8226，ab179695，ab52917，ab17942，ab47339，ab205718，ab2055719)；二氮嗪甲酸(benicinonic acid，BCA)蛋白定量试剂盒购于碧云天生物技术有限公司(批号：P0012)；细胞增殖检测试剂盒(cell counting kit-8，CCK-8)购于日本东仁公司(批号：CK04)。

1.3 主要仪器 CO₂细胞培养箱、生物安全柜为美国Thermo Fisher公司产品；倒置显微镜购于日本Olympus公司；实时无标记细胞分析仪购于美国ACEA公司，酶标仪购于美国BioTek公司；电泳仪为美国Bio-Rad公司产品；凝胶成像仪购于美国Protein Simple公司。

1.4 细胞增殖检测
1.4.1 实时细胞分析技术(real time cellular analysis，RTCA) 在96孔电子培养板中加入培养基获取基线数据，取对数生长期的L929细胞，按5×10⁴个/孔细胞数接种于96孔培养板中，室温静置30min后置于RTCA仪上，37℃，5%CO₂条件下连续监测24h。吸出原培养基，分别予低、中、高浓度SCD(1.25, 2.5, 5mg·mL⁻¹)对照组予等体积培养基，继续培养24h，获取细胞指数(cell index，CI)。

1.4.2 CCK-8法 取对数生长期的L929细胞，按5×10³个/孔细胞数接种于96孔板中，37℃, 5%CO₂孵育24h。吸出原培养基，分别予低、中、高浓度SCD(1.25, 2.5, 5mg·mL⁻¹),对照组予等体积培养基,继续培养24h。更换培养基,每孔加入10μL的CCK-8试剂,37℃孵育2h,酶标仪测定450nm处的吸光度(optical density, OD)。

1.5 细胞黏附检测
1.5.1 RTCA 96孔电子培养板中加入培养基获取基线数据，取对数生长期的L929细胞，按2×10⁴个/孔细胞数接种于培养板中，同时予低、中、高浓度SCD(1.25, 2.5, 5mg·mL⁻¹),对照组予等体积培养基，37℃, 5%CO₂条件下连续监测5h获取CI。

1.5.2 CCK-8法 取对数生长期的L929细胞，按2×10⁴个/孔细胞数接种于培养板中，同时加入低、中、高浓度SCD(1.25, 2.5, 5mg·mL⁻¹),对照组予等体积培养
基，37℃、5%CO₂孵育5h后更换培养基，每孔加入10μL的CCK-8试剂，37℃孵育2h，酶标仪测定450nm的OD。

1.6 细胞迁移检测 采用划痕实验检测细胞迁移。取对数生长期的L929细胞，按2×10⁵个/孔细胞数接种于6孔板中，37℃、5%CO₂条件下培养24h，以200μL洗涤器吸头在培养板孔内划线，PBS洗涤3次，更换为含0.5%血清的培养基并加入低、中、高浓度（1.25、2.5、5mg·mL⁻¹）SCD，对照组予等体积培养基，分别于12、24、36h按记录细胞迁移情况，以Image J图像处理软件进行定量分析。

1.7 Western blot检测愈合相关蛋白表达 取对数生长期的L929细胞，按3×10⁴个/孔细胞数接种于6孔板中，培养24h后分别用低、中、高浓度SCD（1.25、2.5、5mg·mL⁻¹）干预，对照组予等体积培养基。37℃、5%CO₂培养24h后吸出培养基，PBS洗涤3次，加入放射免役沉淀法缓冲液（radioimmunoprecipitation assay buffer，RIPA）后在冰上充分裂解。4℃下12000rpm离心10min，收集上清液，BCA法测定总蛋白浓度。聚丙烯酰胺凝胶电泳（sodium dodecyl sulfate—polyacrylamide gel electrophoresis，SDS—PAGE）分离后，转至聚偏二氟乙烯膜（polyvinylidene fluoride，PVDF），室温封闭2h，加入一抗4℃孵育过夜。次日，加入二抗室温孵育2h，洗膜后电化学发光（electrochemiluminescence，ECL）试剂显色。以β-actin为内参，对蛋白条带的灰度进行半定量分析。

1.8 统计学分析 应用SSPS 22.0统计软件进行统计学分析。计量资料以±表示，两组间比较采用非配对双尾t检验；多组间比较采用单因素方差分析，方差齐时进一步两两比较采用最小显著差异（least significant difference，LSD）法，方差不齐时采用Dunnett法。以P<0.05为差异有统计学意义。

2 结果

2.1 各组细胞增殖比较 CCK-8结果示：与对照组比较，SCD各浓度组L929细胞增殖能力显著提升（P<0.01）。与低浓度组比较，中、高浓度组促增殖作用更显著（P<0.01）。与中浓度组比较，高浓度组促增殖作用更显著（P<0.05）。见图1A。

RTCA结果示，SCD干预后CI在短暂下降后上升。干预30h，与对照组比较，SCD低浓度组CI显著增高（P<0.01）。干预36h，各组CI差异无统计学意义（P>0.05）。干预42h，与对照组比较，SCD低浓度组较高，中、高浓度组CI显著增高（P<0.05），但中、高浓度组间差异无统计学意义（P>0.05）。干预48h，与对照组比较，SCD中、高浓度组CI显著增高（P<0.01），但中、高浓度组间差异无统计学意义（P>0.05）。与低浓度组比较，高浓度组CI显著增高（P<0.05）。见图1B，表1。

2.2 各组细胞黏附比较 CCK-8结果示，与对照组比较，SCD各浓度组L929细胞黏附能力显著提高（P<0.01），但各浓度组间差异无统计学意义（P>0.05）。见图2A。

RTCA结果示，与对照组比较，干预各时点SCD各浓度组L929细胞黏附能力显著提高（P<0.01），但各浓度组间差异无统计学意义（P>0.05）。见图2B，表2。

2.3 各组细胞迁移比较 干预12h，各组划痕愈合百分比差异无统计学意义（P>0.05）。干预24h，与对照组比较，SCD中、高浓度组划痕愈合百分比显著增加（P<0.05）。
表1 RTCA各时间点各组细胞增殖比较（x±s,n=3）

<table>
<thead>
<tr>
<th>组别</th>
<th>30h</th>
<th>36h</th>
<th>42h</th>
<th>48h</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>1.06±0.07</td>
<td>1.20±0.03</td>
<td>1.36±0.01</td>
<td>1.62±0.09</td>
</tr>
<tr>
<td>SCD低浓度组</td>
<td>1.46±0.04*</td>
<td>1.29±0.08</td>
<td>1.43±0.11</td>
<td>1.72±0.06</td>
</tr>
<tr>
<td>SCD中浓度组</td>
<td>1.19±0.06*</td>
<td>1.29±0.10</td>
<td>1.76±0.08**</td>
<td>1.90±0.08**</td>
</tr>
<tr>
<td>SCD高浓度组</td>
<td>1.09±0.13*</td>
<td>1.35±0.22</td>
<td>1.90±0.19**</td>
<td>1.94±0.14**</td>
</tr>
</tbody>
</table>

注：与对照组比较，*P<0.01；与SCD低浓度组比较，**P<0.05，***P<0.01

Note: Compared with control group, *P<0.01; compared with SCD low dose group, **P<0.05; ***P<0.01

图2 各组细胞黏附比较

Fig.2 Comparison of cell adhesion in each group

表2 RTCA各时间点各组细胞黏附比较（x±s,n=3）

<table>
<thead>
<tr>
<th>组别</th>
<th>1h</th>
<th>2h</th>
<th>3h</th>
<th>4h</th>
<th>5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>0.02±0.01</td>
<td>0.03±0.01</td>
<td>0.04±0.01</td>
<td>0.05±0.01</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>SCD低浓度组</td>
<td>0.07±0.01**</td>
<td>0.10±0.00**</td>
<td>0.12±0.01**</td>
<td>0.14±0.01**</td>
<td>0.17±0.02**</td>
</tr>
<tr>
<td>SCD中浓度组</td>
<td>0.07±0.01**</td>
<td>0.10±0.00**</td>
<td>0.11±0.00**</td>
<td>0.13±0.01**</td>
<td>0.16±0.01**</td>
</tr>
<tr>
<td>SCD高浓度组</td>
<td>0.08±0.01**</td>
<td>0.11±0.01**</td>
<td>0.13±0.01**</td>
<td>0.15±0.01**</td>
<td>0.18±0.02**</td>
</tr>
</tbody>
</table>

注：与对照组比较，*P<0.01

Note: Compared with control group, *P<0.01

3 讨论

PCSD是剖宫产术后远期并发症之一，严重影响妇女的身体健康及生活质量，同时会增加子宫破裂和憩室妊娠的巨大风险。目前临床中尚缺乏治疗PCSD的可靠方法，因此如何有效预防PCSD、促进子宫切口愈合成为临床上亟需解决的难题。其中
他类型的创伤愈合同样，剖宫产术后子宫切口愈合也是一个复杂有序的生物学过程，涉及多种细胞和生长因子。目前认为，创伤愈合遵循三个基本阶段，即炎症阶段、增殖阶段和重塑阶段。成纤维细胞参与创伤愈合全过程，在细胞外基质（extracellular matrix，ECM）沉积与重塑、伤口收缩中发挥重要作用⁶⁻⁷。组织损伤时，成纤维细胞在炎症因子的介导下迁移到损伤部位并黏附于ECM上，增殖并合成分泌ECM和生长因子（VEGF、TGF-β等）以促进伤口愈合，其生物学行为直接决定了组织修复的速度与质量。
中医认为创伤可致局部气血瘀滞、经络阻塞，故治疗首先需要祛瘀，否则“瘀血不去，新血不生”。“腐去肌生，肌平皮长”是创伤愈合的自然规律，故亦可予“去腐生肌”类药物治疗，加速坏组织清除及肉芽组织生长[8]。三七重楼生化汤是我科自拟经验方，其中三七活血化瘀、和营止血，可以抑制受损组织释放自由基并能改善局部血液循环；重楼清热解毒、消肿止痛，具有抑菌、抗炎、抗氧化的功效[9]。临床研究证实该方对PCSD具有良好疗效，但其作用机制尚不明确。

本研究选取小鼠成纤维细胞L929作为研究对象，通过CCK-8、RTCA检测细胞增殖及黏附，结果提示：SCD干预后L929细胞增殖动态变化，在最初6h内低浓度SCD能促进L929细胞增殖；干预12-24h中，高浓度能促进L929细胞增殖，且SCD浓度越高，促进增殖作用越明显。黏附实验结果显示，SCD具有促进黏附作用，但不同浓度间差异无统计学意义。划痕实验结果显示，在最初12h各组细胞迁移差异无统计学意义；干预24h，中、高浓度SCD表现出促进迁移的作用，且高浓度促进作用更强；随着干预时间达到36h，低、中、高浓度SCD均具有促进迁移的作用，且SCD浓度越高，作用越显著。由此推测，SCD可以促进成纤维细胞增殖、迁移、黏附，且其作用具有一定时间与浓度依赖性。干预后短时间内，药物浓度间差异并不明显，而随时间推移，逐渐表现出浓度依赖性，这一发现与临床用药时间间隔、剂量选择具有指导意义。

VEGF是一种高度特异性的促血管内皮细胞生长因子，可刺激血管生成并增加血管通透性，在创伤愈合过程中有利于营养物质及代谢产物的运输，从而改善伤口局部微环境；其非血管作用包括激活平滑细胞，促进胶原蛋白沉积[10-12]。TGF-β，具有强烈促伤口愈合作用，可通过经典转化生长因子-SMAD（transforming growth factor-SMAD，TGF-SMAD）途径促进成纤维细胞合成和胶原分泌，有助于减少创面面积；同时可促进成纤维细胞增殖及向肌成纤维细胞分化，提高创面张力，加速伤口闭合[13-14]。本研究通过Western blot技术检测SCD干预后成纤维细胞VEGF、TGF-β，蛋白的表达，结果提示低、中、高浓度SCD均不影响TGF-β蛋白表达；高浓度SCD显著提高VEGF蛋白水平，而低、中浓度SCD促进VEGF分泌的功效不明显。上述结果提示SCD可能通过上调VEGF表达来改善成纤维细胞的血供和氧供状态，同时刺激成纤维细胞的增殖、黏附、迁移，从而促进创面愈合。

丝裂原活化蛋白激酶（mitogen activated protein kinase，MAPK）信号通路广泛参与细胞病生理反应[15]。研究证实，MAPK信号通路特别是ERK1/2的活化，对组织损伤后应激反应至关重要[16-17]。包括VEGF在内的组织损伤相关因子可激活ERK1/2信号通路，并通过促进细胞定向迁移、黏附、增殖等发挥促进创面愈合的作用。本研究发现低、中浓度SCD不改变ERK1/2蛋白磷酸化水平，而高浓度SCD干预后，成纤维细胞ERK1/2蛋白的磷酸化水平明显上调，结果提示SCD激活的成纤维细胞增殖、迁移、黏附可能与ERK1/2蛋白磷酸化增强有关，而ERK1/2蛋白磷酸化水平提高可能是VEGF表达上调的结果。

综上所述，本研究提示SCD能够明显提高成纤维细胞的增殖、黏附及迁移能力，并能上调愈合相关蛋白VEGF的表达，进而活化ERK1/2蛋白，发挥促进PCSD伤口愈合的功效，然而其确切机制仍不清楚，后续将进一步深入研究，为SCD的开发、应用提供实验依据，也为PCSD的防治提供更多可靠的方法。

（收稿日期：2020-06-14）